Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 472(3): 329-38, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26443864

RESUMO

Phosphorylation-dependent cell communication requires enzymes that specifically recognize key proteins in a sea of similar, competing substrates. The protein kinases achieve this goal by utilizing docking grooves in the kinase domain or heterologous protein adaptors to reduce 'off pathway' targeting. We now provide evidence that the nuclear protein kinase CLK1 (cell division cycle2-like kinase 1) important for splicing regulation departs from these classic paradigms by using a novel self-association mechanism. The disordered N-terminus of CLK1 induces oligomerization, a necessary event for targeting its physiological substrates the SR protein (splicing factor containing a C-terminal RS domain) family of splicing factors. Increasing the CLK1 concentration enhances phosphorylation of the splicing regulator SRSF1 (SR protein splicing factor 1) compared with the general substrate myelin basic protein (MBP). In contrast, removal of the N-terminus or dilution of CLK1 induces monomer formation and reverses this specificity. CLK1 self-association also occurs in the nucleus, is induced by the N-terminus and is important for localization of the kinase in sub-nuclear compartments known as speckles. These findings present a new picture of substrate recognition for a protein kinase in which an intrinsically disordered domain is used to capture physiological targets with similar disordered domains in a large oligomeric complex while discriminating against non-physiological targets.


Assuntos
Núcleo Celular/enzimologia , Simulação de Acoplamento Molecular , Proteínas Nucleares/química , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Humanos , Proteína Básica da Mielina/química , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo
2.
Biochem J ; 462(1): 143-52, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24869919

RESUMO

SR proteins are essential splicing factors that are regulated through multisite phosphorylation of their RS (arginine/serine-rich) domains by two major families of protein kinases. The SRPKs (SR-specific protein kinases) efficiently phosphorylate the arginine/serine dipeptides in the RS domain using a conserved docking groove in the kinase domain. In contrast, CLKs (Cdc2-like kinases) lack a docking groove and phosphorylate both arginine/serine and serine-proline dipeptides, modifications that generate a hyperphosphorylated state important for unique SR protein-dependent splicing activities. All CLKs contain long flexible N-terminal extensions (140-300 residues) that resemble the RS domains present in their substrate SR proteins. We showed that the N-terminus in CLK1 contacts both the kinase domain and the RS domain of the SR protein SRSF1 (SR protein splicing factor 1). This interaction not only is essential for facilitating hyperphosphorylation, but also induces co-operative binding of SRSF1 to RNA. The N-terminus of CLK1 enhances the total phosphoryl contents of a panel of physiological substrates including SRSF1, SRSF2, SRSF5 and Tra2ß1 (transformer 2ß1) by 2-3-fold. These findings suggest that CLK1-dependent hyperphosphorylation is the result of a general mechanism in which the N-terminus acts as a bridge connecting the kinase domain and the RS domain of the SR protein.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Animais , Arginina/metabolismo , Humanos , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Serina/metabolismo , Fatores de Processamento de Serina-Arginina , Especificidade por Substrato
3.
Biochemistry ; 52(43): 7595-605, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24074032

RESUMO

The splicing function of SR proteins is regulated by multisite phosphorylation of their C-terminal RS (arginine-serine rich) domains. SRPK1 has been shown to phosphorylate the prototype SR protein SRSF1 using a directional mechanism in which 11 serines flanked by arginines are sequentially fed from a docking groove in the large lobe of the kinase domain to the active site. Although this process is expected to operate on lengthy arginine-serine repeats (≥8), many SR proteins contain smaller repeats of only 1-4 dipeptides, raising the question of how alternate RS domain configurations are phosphorylated. To address this, we studied a splice variant of Tra2ß that contains a C-terminal RS domain with short arginine-serine repeats [Tra2ß(ΔN)]. We showed that SRPK1 selectively phosphorylates several serines near the C-terminus of the RS domain. SRPK1 uses a distributive mechanism for Tra2ß(ΔN) where the rate-limiting step is the dissociation of the protein substrate rather than nucleotide exchange as in the case of SRSF1. Although a functioning docking groove is required for efficient SRSF1 phosphorylation, this conserved structural element is dispensable for Tra2ß(ΔN) phosphorylation. These large shifts in mechanism are likely to account for the slower net turnover rate of Tra2ß(ΔN) compared to SRSF1 and may signal fundamental differences in phosphorylation among SR proteins with distinctive arginine-serine profiles. Overall, these data indicate that SRPK1 conforms to changes in RS domain architecture using a flexible kinetic mechanism and selective usage of a conserved docking groove.


Assuntos
Modelos Moleculares , Proteínas Nucleares/química , Proteínas Serina-Treonina Quinases/química , Proteínas de Ligação a RNA/química , Motivos de Aminoácidos , Arginina/química , Humanos , Cinética , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Fatores de Processamento de Serina-Arginina , Especificidade por Substrato
4.
PLoS Comput Biol ; 9(9): e1003188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039559

RESUMO

The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.


Assuntos
Quinases da Família src/metabolismo , Sequência de Aminoácidos , Biocatálise , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Homologia de Sequência de Aminoácidos , Domínios de Homologia de src , Quinases da Família src/química
5.
J Mol Biol ; 425(16): 2894-909, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23707382

RESUMO

SR proteins are essential splicing factors whose biological function is regulated through phosphorylation of their C-terminal RS domains. Prior studies have shown that cytoplasmic-nuclear translocalization of the SR protein SRSF1 is regulated by multisite phosphorylation of a long Arg-Ser repeat in the N-terminus of the RS domain while subnuclear localization is controlled by phosphorylation of a shorter Arg-Ser repeat along with several Ser-Pro dipeptides in the C-terminus of the RS domain. To better understand how these two kinases partition Arg-Ser versus Ser-Pro specificities, we monitored the phosphorylation of SRSF1 by CLK1 and SRPK1. Although SRPK1 initially binds at the center of the RS domain phosphorylating in an orderly, N-terminal direction, CLK1 makes widespread contacts in the RS domain and generates multiple enzyme-substrate complexes that induce a random addition mechanism. While SRPK1 rapidly phosphorylates N-terminal serines, SRPK1 and CLK1 display similar activities toward Arg-Ser repeats in the C-terminus, suggesting that these kinases may not separate function in a strict linear manner along the RS domain. CLK1 induces a unique gel shift in SRSF1 that is not the result of enhanced Arg-Ser phosphorylation but rather is the direct result of the phosphorylation of several Ser-Pro dipeptides. These prolines are important for binding and phosphorylation of the SR protein by CLK1 but not for the SRPK1-dependent reaction. The data establish a new view of SR protein regulation in which SRPK1 and CLK1 partition activities based on Ser-Pro versus Arg-Ser placement rather than on N- and C-terminal preferences along the RS domain.


Assuntos
Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Modelos Biológicos , Fosforilação , Fatores de Processamento de Serina-Arginina
6.
Biochemistry ; 51(33): 6584-94, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22839969

RESUMO

Protein kinases are essential signaling enzymes that transfer phosphates from bound ATP to select amino acids in protein targets. For most kinases, the phosphoryl transfer step is highly efficient, while the rate-limiting step for substrate processing involves slow release of the product ADP. It is generally thought that structural factors intrinsic to the kinase domain and the nucleotide-binding pocket control this step and consequently the efficiency of protein phosphorylation for these cases. However, the kinase domains of protein kinases are commonly flanked by sequences that regulate catalytic function. To address whether such sequences could alter nucleotide exchange and, thus, regulate protein phosphorylation, the presence of activating residues external to the kinase domain was probed in the serine protein kinase SRPK1. Deletion analyses indicate that a small segment of a large spacer insert domain and a portion of an N-terminal extension function cooperatively to increase nucleotide exchange. The data point to a new mode of protein kinase regulation in which select sequences outside the kinase domain constitute a nucleotide release factor that likely interacts with the small lobe of the kinase domain and enhances protein substrate phosphorylation through increases in ADP dissociation rate.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Deleção de Sequência , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...